BT-5/D-22

45261

THEORY OF COMPUTATION Paper-PC-CS-AIDS-301A

Time: Three Hours]

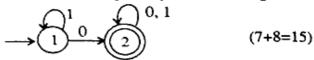
[Maximum Marks: 75

Note: Attempt five questions in all, selecting at leastone question from each unit. Each question carry equal marks.

UNIT-1

(a) If L is accepted by an NFA with ε-transition then show that L is accepted by an NFA without ε-transition.

(b) Construct a DFA equivalent to the NFA. $M = (\{p, q, r\}, \{0, 1\}, \delta, p, \{q, s\})$. Where δ is defined in the following table.


δ	0	1
ъp	{q,s}	{q}
q∗	{r}	{q,r}
r	{s}	{p}
s [⋆]	_	{q}

(7+8=15)

(a) Write short notes on precedence of Regular expression operators. Construct an NFA equivalent to the regular expression (0+1)*(00+11)(0+1)*.

[P.T.O.

(b) Write about equivalence and minimization of NFA and DFA automata. Obtain the regular expression that denotes the language accepted by the following DFA.

UNIT-II

- 3. (a) Let G be the grammar S->aB/bA, A->a/aS/bAA, B->b/bS/aBB. Obtain parse tree for the string aaabbabbba.
 - (b) Discuss closure properties of CFL.
 - (c) Convert the grammar S->AB, A->BS/b, B->SA/a into Greibach Normal Form. (5+5+5=15)
- (a) Discuss Pumping lemma along with its advantages.
 State Pumping Lemma for Context free languages.
 - (b) Define a Regular set using pumping lemma. Show that the language L = {0i² / i is an integer i >= 1} is not regular. (7+8=15)

UNIT- III

- Write a detailed note on the representation, equivalence and designing of Mealey and Moore machines. (15)
- 6. What are the different ways in which a PDA accepts the language? Define them. Is it true that non-deterministic PDA is more powerful than that of deterministic PDA? Justify your answer and explore the potential applications of PDA.

2

UNIT-IV

- 7. (a) What is Turing machine? Explain in detail: "The Turing Machine as a Computer of integer functions".
 - (b) Explain time and tape complexity measures of Turing machines. (7+8=15)
- 8. (a) When a problem is said to be decidable or undecidable? Give an example of decidable and an undecidable.
 - (b) What is Post's Correspondence problem (PCP)? Discuss.

downloaded from

(7+8=15)

45261/150/KD/687